4 ラマン分光

4.1 原理と測定法の発展状況

4.2 測定装置

はじめに
レーザー光源
分光器および光学素子
検出器
汎用ラマン分光計
波長可変ラマン分光計

4.3 測定技術

はじめに
波数校正と感度補正
偏光測定

7 分光 II

Ⅲ編 電子スペクトル

1 序論

2 光源

2.1 通常光源
紫外・可視・近赤外の光源とフィルター
真空紫外光

2.2 レーザー

共鳴ラマン測定
サンプリング

4.4 種々の測定法

時間分解ラマン測定
表面増強ラマン測定
顕微ラマン測定
差ラマンおよびラマン円二色性測定
フーリエ変換ラマン測定

4.5 非線形ラマン分光

コヒーレント反ストークスラマン分光
逆ラマンおよびラマン利得分光
ハイパーグラマン散乱測定法

3 序論

固体レーザー
気体レーザー
液体レーザー
ピコ秒・フエムト秒レーザー

2次コヒーレント光

シンクロトロン放射とその光源
シンクロトロン放射
光源用ストレージリング
3 測 光 法………………137
3・1 序 論………………137
3・2 ポイントセンサー…………138
光電子増倍管 (139)
ホトダイオード (146)
3・3 イメージセンサー…………151
固体イメージセンサーの構成
(151)
固体イメージセンサーの諸特性
(153)
駆動方法 (154)
分光法への応用 (155)
半導体位置検出器 (156)
微弱光用イメージセンサー (157)
3・4 光子計数測定………………160
光子計数領域 (160)
光電子増倍管による光子計数測定
(161)
アバンジェホトダイオードによる
光子計数測定 (163)
1次元および2次元光子計数用の
検出器 (163)
3・5 標準計測………………165
光源の放射量の校正法 (166)
検出器の感度校正法 (167)
3・6 真空紫外光測定法…………168
写真乾板 (169)
光電管と光電子増倍管 (169)
イオン化箱と計数管 (172)
4 吸収および反射スペクトル…175
4・1 序 論………………175
4・2 可視・紫外吸収分光…………180
溶液の吸収スペクトルの測定
(180)
気体の吸収スペクトルの測定
(186)
4・3 真空紫外分光………………200
真空紫外分光法 (200)
気体の吸収測定 (217)
固体の吸収測定 (222)
4・4 X 線 分 光………………233
X 線と電子遷移 (233)
X 線の発生 (234)
X 線の分光 (235)
X 線の検出 (238)
X 線分光の応用——X 線蛍光と
XAFS (240)
4・5 偏 光 分 光………………242
偏 光 (242)
偏光子・直線偏光子 (243)
単結晶の光学的方位 (247)
結晶の偏光スペクトルの測定
(249)
4・6 円二色性と磁気円二色性……254
円二色性 (254)
磁気円二色性 (266)
4・7 時間分解吸収分光 (ns〜μs)…275
励起状態および不安定分子種の吸
収スペクトル (275)
測定法 (277)
時間分解吸収スペクトルの測定例
と問題点 (283)
4・8 時間分解吸収分光 (ps〜fs) …289
時間分解吸収分光の特徴 (289)
5 場光およびりん光スペクトル ... 339

5.1 場光スペクトル ... 339

序 論 (339)
原理・定常法 (341)
場光寿命測定法 (364)
顕微場光測定 (379)

5.2 里ん光スペクトル .. 384

原理・定常法 (384)
里ん光寿命 (398)

6 可視・紫外レーザー分光 405

6.1 序 論 .. 405

6.2 レーザー誘起蛍光法 408

励起スペクトル (409)
発光スペクトル (414)
蛍光ディップ分光法 (418)

6.3 多光子イオン化法 420

MPI 分光法 (421)
種々の MPI 分光法 (423)
測定法 (425)
測定例 (430)

6.4 ドップラーフリー分光 432

分子線の進行方向に直角にレーザーを照射する方法 (434)
ドップラーフリー飽和分光法 (435)
ドップラーフリー偏光分光法 (436)
ドップラーフリー二光子吸収分光法 (442)

6.5 光-光二重共鳴 443

6.6 誘導放出励起分光法 446

6.7 四光波混合過程分光 450

序 論 (450)
エネルギー準位の緩和時間 T_1 と
位相緩和時間 T_2 (451)
2 パルスおよび3パルスフォトン
エコー (451)
インコヒーレント光フォトンエコー
(453)
半導体レーザーによるインコヒー
レント光蓄積フォトンエコー
(456)
インコヒーレント光を用いたエネ
ルギー準位の緩和時間 T_1 の測
定 (457)

7 種々の測定法 461

7.1 磁場および電場下の測定 461

序 論 (461)
液相反応の磁場効果 (465)
気相発光の磁場効果 (469)
気相発光の電場効果 (473)

7.2 光音響分光法 475

PAS の定理 (475)
8分光 III

IV編 光電子分光

1 光電子分光 3
1.1 光電子分光の特徴 3
はじめに (3)
真空紫外光電子スペクトルとイオン化ポテンシャル (4)
レーザー光電子分光 (6)
1.2 装置とスペクトル測定法 7
真空紫外光電子分光法 (7)
レーザー光電子分光法 (16)
1.3 紫外光電子スペクトルの解析と応用 ... 31
イオン化エネルギー (31)
分子の光電子スペクトル・バンド

8分光 III

光学セル (492)
装置例 (493)
ガラス細管法 (494)
7.5 ヒートバルス法 495
7.6 光ガルバノ分光法 499

序論 (499)
実験装置 (499)
放電管 (502)
高周波放電 (504)

の形状と分子構造 (32)

Koopmansの定理とイオン化エネルギーの理論計算 (34)

多電子励起過程 (36)
自動イオン化過程 (37)
多重項分裂 (38)
コーン-テラー効果 (39)
スピニ-軌道相互作用 (40)
置換効果 (41)
分子内軌道相互作用と光電子スペクトル (42)
光電子角度分布 (43)
光電子-光イオン同時計数 (47)
不安定分子の光電子スペクトル (49)
分子間相互作用と光電子スペクトル