1 基本操作 I

1 実験研究の計画から発表まで …1
1.1 研究を始めるにあたって …………1
1.2 文献情報の集め方 ……………3
 はじめに (3)
 表題誌と抄録誌 (4)
 Chemical Abstractsの使い方 (5)
 資料の入手 (8)
 オンライン情報検索 (8)
1.3 実際データの扱い方 ……………11
 実験ノートの書き方 (11)
 統計手法によるデータ整理 (18)
1.4 研究成果の発表 …………………27
 はじめに (27)
 講演 (28)
 ポスター (31)
 論文 (31)

2 単位・用語・記号・命名法 …35
2.1 物理量の単位・用語・記号 …35
 はじめに (35)
 物理量とその表記 (36)
 単位とその表記 (39)
 数字と数学記号 (46)
 略語と略号 (47)

2.2 化合物命名法 ……………………48
 無機化合物命名法 (48)
 有機化合物命名法 (53)

3 基本的な量の設定とはかり方 ………………………61
3.1 重量と体積 ………………………61
 重量のはかり方 (61)
 密度と比重 (68)
3.2 温度 …………………………72
 温度の単位と実用温度目盛 (72)
 1990年国際標準温度目盛 (ITS-90) とトレーサビリティー (74)
 温度計の選択 (76)
 温度計の適用 (79)
 データの採取と正確さの確認 (80)
3.3 压力・真空 ……………………82
 真空の性質 (82)
 真空をはかる (84)
 真空をつくる (87)
3.4 屈折率と旋光度 …………………91
 屈折率 (91)
 旋光度 (98)
3.5 液体の粘性 ……………………104
 粘性液体と基本式 (104)
1 基本操作 I

粘度の測定法 (107)

3・6 pH 115
pH の定義 (115)
pH の意味 (116)
pH と水素イオン濃度 (117)
pH 計 (119)
pH 標準液 (124)
pH 測定 (128)
pH 測定上の注意 (133)
特殊な試料の pH 測定 (136)

3・7 溶解度 140
溶解度とは何か (140)
溶解平衡の表示 (142)
溶解度の単位 (142)
溶解度の測定についての一般的注意事項 (143)
溶解度の測定 (151)
溶解度に関連した成書と総説 (159)

分離と精製 161

4・1 はじめに 161
4・2 抽出 163
抽出の数値的取扱い (163)
抽出の方法および装置 (165)
無機物質の抽出 (173)
有機物質の抽出 (180)

4・3 溶解・沈殿・浄過・透析 184
溶 解 (184)
沈 殿 (188)
浄 過 (189)
透 析 (194)
逆浸透 (196)

4・4 乾燥と保存 198
乾 燥 (198)
保 存 (202)

4・5 帯電解法 203
はじめに (203)
装 置 (205)
純度の確認 (210)
単結晶の生成 (211)
相図の研究 (212)

4・6 蒸留と昇華 214
蒸 留 (214)
昇 華 (226)

4・7 有機溶媒の精製 229
炭化水素 (230)
アルコール (232)
エーテル (233)
ケトン (235)
カルボン酸およびその誘導体 (235)
ハロゲン化炭化水素 (236)
窒素化合物 (237)
硫黄化合物 (239)
リン化合物 (239)

4・8 純水のつくり方 241
前処理 (242)
蒸留法 (243)
イオン交換法 (244)
逆浸透法・限外浄過法・精密浄過法 (244)
超純水 (245)

4・9 電気泳動法 247
等電点と pH-移動度曲線 (247)
ゾーン電気泳動法 (248)
5 クロマトグラフィー255
5・1 ガスクロマトグラフィー.........256
実験に必要な基本原理と条件設定
の基礎 (256)
装置とその取扱い (260)
温度設定と昇温ガスクロマトグラ
フィー (264)
分取ガスクロマトグラフィー (265)
クロマトグラムの解析 (266)
ガスクロマトグラフィーとその他
の応用 (266)
5・2 液体クロマトグラフィー.........267
高速液体クロマトグラフィー
(271)
薄層クロマトグラフィー (288)
カラムクロマトグラフィー (293)
ペーパークロマトグラフィー
(299)
連続抽出型クロマトグラフィー
(301)
6 不安定化合物の取扱い307
6・1 化合物の安定性について307
6・2 熱的に不安定な化合物308
低温での分離・精製法 (308)
低温での不安定化合物の発生法
(310)
低温での合成反応 (313)
化学的不活性化 (313)
6・3 酸素に対して不安定な化合物 ..314
真空ラインの利用 (314)
グローブボックス、グローブパッ
グの利用 (317)
実験台上的簡便な操作 (317)
気体、溶媒の脱酸素法 (318)
6・4 湿気に対して不安定な化合物 ..319
液体試料の取扱い (319)
固体試料の取扱い (320)
6・5 光に対して不安定な化合物 ..320
6・6 酸・塩基に対して不安定な化合物
..................................321
6・7 そ の 他321
7 元素分析と質量分析323
7・1 元素分析の原理323
はじめに (323)
重量法による炭素、水素分析法
(323)
窒素分析法 (324)
熱伝導度法による炭素、水素、窒
素同時分析法 (325)
酸素分析法 (328)
ハロゲン、硫黄分析法 (329)
金属およびその他の元素分析法
(330)
7・2 元素分析に要する注意331
はじめに (331)
微量化学はかりの取扱い (332)
試料のはかりとり (334)
試薬類 (336)
保 守 (338)
7・3 質量分析の原理339
質量分析とは (339)
2 基本操作 II

1 安全な実験のための心得 1
1・1 実験室の設計 1
 化学実験室に必要な設備 (2)
 安全で機能的な化学実験室の設計 (5)
1・2 安全指針 9
 化学実験に関する一般的な注意 (9)
 防災および安全対策 (20)
 事故の際の応急医療処置 (28)
 放射線源と放射性物質の取扱い (35)

 廃棄物処理と環境保全 (55)

2 反応実験のための基本操作 63
2・1 反応装置の組立て 63
 ガラス細工とフレーム装置 (63)
 電気回路の組立て (82)
2・2 温度制御 97
 化学実験における温度制御 (97)
 電子式温度調節器の制御動作 (98)